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Duality Relations for Non-Ohmic Composites, with
Applications to Behavior near Percolation
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Keller, Dykhne, and others have exploited duality to derive exact results for the
effective behavior of two-dimensional Ohmic composites. This paper addresses
similar issues in the non-Ohmic context. We focus primarily on three different
types of nonlinearity: (a) the weakly nonlinear regime; (b) power-law behavior;
and (c) dielectric breakdown. We first make the consequences of duality explicit
in each setting. Then we draw conclusions concerning the critical exponents and
scaling functions of "dual pairs" of random non-Ohmic composites near a per-
colation threshold. These results generalize, unify, and simplify relations pre-
viously derived for nonlinear resistor networks. We also discuss some self-dual
nonlinear composites. Our treatment is elementary and self-contained; however,
we also link it with the more abstract mathematical discussions of duality by
Jikov and Kozlov.

1. INTRODUCTION

Convex duality is important in many areas of physics. In the present context
—inhomogeneous conducting materials—it gives the relationship between
two well-known variational principles: one for the electric field, the other
for the current field. Other examples of duality include the complementary
variational principles of mechanics, and duality in linear programming.

In most settings the primal and dual variational principles involve
unknowns of different types. In 3D conductivity, for example, the primal
involves curl-free fields while the dual involves divergence-free fields. The
situation is different, however, for systems which are effectively two-dimen-
sional—for example when the microgeometry has cylindrical symmetry, or
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when a thin film has thickness much smaller than all other microgeometric
length scales. Then the primal and dual variational principles involve
unknowns which are fundamentally similar, since divergence-free and curl-
free fields are equivalent under rotation by 90 degrees.

For 2D composites, duality can be viewed differently. Instead of
describing each composite by a pair of dual variational principles, we can
associate with each composite a physically different dual composite, whose
structure and properties are related to those of the starting composite in a
simple, algebraic way. We shall explain this in detail in Section 2. Viewed
this way, duality becomes a scheme for relating the effective behavior of
certain pairs of systems.

The consequences of duality have been studied quite extensively for
linearly conducting composites—i.e. those made from Ohmic materials,
whose local conductivity is independent of the local electric field. The first
application was by Keller, who derived a "phase interchange relation" for
two-component composites made from isotropic Ohmic conductors.(1,2)

Subsequently but independently, Dykhne derived an exact expression for
the conductivity of an isotropic polycrystalline film made of a single
anisotropic material.(3) These results were unified by Mendelson, who
extended them to systems with general anisotropic conductivity tensors. (4,5)

Alternative proofs of Mendelson's relations have been given by Kohler and
Papanicolaou(6) and Nevard and Keller.(7) Related results have also been
obtained for other two-dimensional problems, see e.g. Milton,(8) Helsing,
Milton, and Movchan(9) and the references therein.

In the non-Ohmic case the existence of dual variational principles is
well-known. The literature on nonlinear conductivity in composites is
relatively sparse, but a huge amount of work has been done on mechanical
properties of nonlinear composites. In polycrystal plasticity, for example,
Hill,(10) Hutchinson,(11) and many others have made use of the dual varia-
tional principles for stress and strain-rate. A rigorous mathematical treat-
ment of dual variational principles for nonlinear composites can be found
in the book by Jikov, Kozlov, and Oleinik. (2)

For 2D non-Ohmic composites, duality can once again be viewed dif-
ferently—as a means of relating each system to a physically different dual.
Curiously, however, the consequences of duality for 2D composites have
been almost entirely ignored in the non-Ohmic context. The only investiga-
tions we know are the short article of Kozlov(13) and a short discussion in
the book of Jikov, Kozlov, and Oleinik.(12) This work clearly commu-
nicates the idea that duality should have consequences, but it considers in
detail only a few specific applications. There is also some work addressing
analogous issues for networks of non-Ohmic resistors, see e.g. Straley and
Kenkel.(14)
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The goal of this paper is a systematic and concrete treatment of the
consequences of duality for 2D non-Ohmic composites. We start, in Sec-
tion 2, with a self-contained treatment of duality in the nonlinear setting.
Then we specialize, in Section 3, to three different cases: (a) the weakly
nonlinear regime; (b) strongly nonlinear composites with power-law
behavior; and (c) dielectric breakdown. We concentrate in each case on the
consequences of duality for behavior near a percolation threshold. In par-
ticular we show: (a) equality of the critical exponents describing the weakly
nonlinear behavior of certain composites above and below a percolation
threshold (see Eq. (44)); (b) a simple relation between the critical expo-
nents of power law composites (Eq. (59)); and (c) equality of the critical
exponents describing the threshold field of a system undergoing dielectric
breakdown and the critical current of a inhomogeneous perfect conductor
(Eq. (70)).

Our conclusions, based on duality, are among the few exact relations
that exist concerning the effective behavior of nonlinear dielectric composites.
Such materials have attracted increasing theoretical and experimental
attention during the past 10 years, in part because of their many potential
applications in optical and electronic devices, see e.g. Bergman and
Stroud(15) and the references cited there. For mathematical treatments see
Miksis,(16) DelPAntonio(17) and Jikov et al.(12) It is generally not practical
to solve for the bulk effective properties of such composites analytically or
numerically. Therefore it is necessary to rely upon limiting cases, special
geometries, bounds, exact relations, and self-consistent estimates. Some
specific results include: (1) an equivalence between the effective non-
linearity of a weakly nonlinear composite and the flicker noise amplitude
of a linear composite with the same microgeometry;(18) (2) an evaluation of
the effective dielectric constant of a strongly nonlinear composite to second
order in the local dielectric constant fluctuations;(19) (3) a calculation of the
bulk effective conductivity of layered microgeometries;(20) (4) various
extensions of the Hashin-Shtrikman bounds to strongly nonlinear com-
posites;(21-24) and (5) an extension of the Maxwell Garnett theory to dilute
mixtures of nonlinear inclusions in a linear host.(25,26) The duality relation
explored in this paper provides an additional exact result.

2. DUALITY OF 2D NONLINEAR COMPOSITES

There are two alternative approaches: one based on differential equa-
tions, the other on variational principles. We shall discuss them both, in
Sections 2.1 and 2.2 respectively, after establishing some basic notation.
Section 2.3 discusses a little-known subtlety that arises when the compo-
nent materials have power law behavior with different exponents.
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where n is a unit vector normal to the boundary. Abusing notation con-
veniently, we shall say "E = E0 at the boundary" when we mean (2), and
"J = J0 at the boundary" when we mean (3). Writing
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Our composites are heterogeneous bodies in the x, y plane whose local
conductivity a(x, y, E) depends on the spatial coordinates x, y and also on
the local electric field E. The local electric current J is thus a nonlinear
function of the electric field E:

We will usually drop the explicit dependence on x, y to achieve greater
compactness of notation. The electric field comes from a potential,
E = — VP, and the current field is divergence free, V . J = 0, so the electric
potential satisfies the partial differential equation

for the volume-averaged electric and current fields, we may define the bulk
effective conductivity P* to be the ratio of the two:

Notice that if E = E0 at the boundary then <E> =E0 but <J> must be
calculated by solving the differential equation. Similarly, if J = J0 at the
boundary <J> =J0 but <E> must be calculated by solving the differential
equation.

The effective conductivity depends on the composition of the body, i.e.
the form of the function x, y, E->a(x , y, E). If the local behavior is non-
Ohmic then so is the bulk behavior: P* is a function of <£> (or, equiv-
alently, of <J>) as we vary the applied field. In general a* depends on the

and a suitable boundary condition.
When discussing the bulk effective conductivity it is natural to impose

one of the "constant applied field" boundary conditions:

or



form of the boundary condition, i.e. the choice of (2) vs. (3). However this
dependence disappears as length scale of the microstructure tends to zero—
the limit in which the composite behaves as a homogeneous body with con-
ductivity a*.

Our definition (5) is standard, but it is not the only approach. Some
authors prefer to define the effective behavior of a nonlinear composite
through a variational principle for its "effective energy," see e.g. ref. 12. The
consistency of these two definitions is well-known; we will review it in
Section 2.2.

A word is in order concerning restrictions on the local conductivity
a(x, y, E). We shall always assume that the dependence of J on E is
derivable from a convex potential.2 This means
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which reduces in the Ohmic case to the familiar symmetry condition
pij = pji. The convexity of the potential is equivalent to positive definiteness
of dJ i / dE j , i.e. positivity of the symmetric matrix whose (i, j)th element is
given by (7). This reduces in the Ohmic case to the familiar condition that
pij be positive definite.

It is not always convenient to work in such generality. A special but
very important case arises when the composite is locally isotropic, i.e.
p ( x , y , E ) is scalar-valued. The existence of a potential implies that a
scalar-valued a can depend on E only through |£|:

Our convexity hypothesis becomes

2 We use the term "potential" for both p (the electric potential) and U (the potential energy)
trusting that no confusion will arise.

for some potential energy U( x, y, E), assumed convex in its dependence on
E with x and y held fixed. This hypothesis guarantees the uniqueness of the
local fields. It also assures invertibility of the relation J = J(E), in other
words it lets us solve for E in terms of J. The existence of a potential energy
is equivalent to dJi/dEJ = dJj/dEi. This is easily expressed in terms of a
using (1) :



This implies that \J\ = p( |£|) \E\ is a monotone function of \E\, so one can
solve (8) uniquely for E as a function of J.

The discussion is naturally not limited to conductivity. It applies to
any transport property connecting a divergence-free field (the "current")
with a curl-free field (the "electric field"). Examples include thermal con-
ductivity, magnetic permeability, and dielectric behavior.

2.1. Duality via Field Equations

We begin with the simplest case: a macroscopically isotropic non-
Ohmic composite made from locally isotropic non-Ohmic materials. In this
case the local J-E relation is given by (8) and the macroscopic J-E relation
has the form < J > = p * ( | < £ > | ) < £ > . Our goal is to determine a physically
different "dual composite" whose effective behavior is related to that of the
original ("primal") composite. We suppose that for the primal composite
a* is defined using a constant-electric-field boundary condition. As we shall
see, for the dual composite the effective behavior must be defined instead
using a constant-current boundary condition.

Following Mendelson(5) and others, we recognize that Jt = ( — J2, J1)
is a gradient: there is a function P such that

where J-1 is the inverse function of J. Here we write J-1(|TP|) instead of
J - l ( \ J \ ) to avoid using the two different interpretations of J in a single
formula. Since er is scalar-valued we have
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Also, E± = (-E2,El) is divergence-free, and it satisfies E t = E t
0 at the

boundary if E = E0 there. From the local relation (8) we get

with the convenient abuse of notation J(t) = a(t) t. (Thus J ( \ E \ ) represents
the magnitude of the current, while J(E) represents the current vector.)
Our convexity hypothesis implies that J(t) is monotone, so we can invert
the preceding relation to give



It is convenient to write this in less compact notation, emphasizing the
dependence of a* on the applied field and the form of the local conduc-
tivity:

This is the duality relation for effective conductivities of non-Ohmic
inhomogeneous materials in the isotropic context.

We turn now to the general case, when both the local conductivity and
the effective conductivity are permitted to be anisotropic. The local J-E
relation is (1) and the effective conductivity is defined by
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We are assuming that P*d is scalar, so the preceding formula can be rewritten

when the electric field is — PW. If the effective conductivity P*d of the dual
composite is defined using the constant-current boundary condition
£t = Et

0 , then averaging of (11) gives

We now give the constitutive law for the dual composite. It is chosen
so that the current field is £t when the electric field is JL. In view of (11) ,
this is achieved by defining the local conductivity of the dual composite to
be

Remembering that E0 = <£> and writing J0= <J> = p*(|£0|) E0, we have
shown that

We suppose as before that a* is defined for the primal composite using the
constant-electric-field boundary condition E = E0.

The key to the isotropic case was (11). It generalizes easily: if
J =a(E)E then



2.2. Duality via Variational Principles

One can define effective behavior using variational principles rather
than field equations. Recall from (6) that the local J-E relation is assumed
to come from a convex potential: J = dU/dE. We define the associated dual
potential by
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This is the general duality relation for the effective conductivities of non-
Ohmic composites.

In less compact notation, emphasizing the dependence of a* on the applied
field and the form of the local conductivity:

Remembering that £ 0 =<£> and writing J0 = <J> =c*(E) E0, we have
shown that

Now, <Jt> = <Rj>=R<j> and similarly < £ t > = R < £ > . Taking this
into account, and noting that RT= — R, we see that (17) is equivalent to

when the electric field is — VP. This is chosen so that the current field is
Et when the electric field is Jt. If we define the effective conductivity a*d

using the constant-current boundary condition Et = Et
0 then averaging of

(15) gives

where R represents rotation by 90°, i.e. R£ = Et. We are assuming that the
J-E relation is invertible, so it can be used to write £ as a function of JL.
We write this dependence as E = e ( J L ) .

The relation (15) dictates the constitutive law for the dual composite:
its local conductivity is
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Elaborating on this point, consider first the variational principle (21).
If E and J = a(E)E solve the field equations with boundary condition
E=E0, then the first variation of (21) vanishes at E, so by convexity E
achieves the minimum. Differentiating both sides of (21) with respect to E0

we find that

with y0 = < J > . Thus the effective behavior of the composite is associated
with the potential U*. A similar argument shows that when a* is defined
using boundary condition J = J0, the effective behavior of the composite is
associated with the potential U*.

What does our "dual composite" look like in this variational setting?
The answer is simple: if the primal composite has potential U(x, y, E) then
the dual composite has potential

822/90/1-2-12
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and we observe that

We discussed two slightly different definitions of the effective conduc-
tivity, one using the constant-electric-field boundary condition E=E0, the
other using the constant-current boundary condition J = J0, The former
corresponds to the variational principle for the macroscopic potential at
applied electric field E0:

The latter corresponds to the variational principle for the dual macroscopic
potential at applied current field J0:

Thus we have



To show this, we need merely verify that if E minimizes the constant-
electric-field variational principle (21) for the primal composite then Et

minimizes the constant-current variational principle (22) for the dual
composite.

The desired application of (22) has integrand Ud. Starting from the
definition (19) we have

Thus it is equivalent to the constant-electric-field variational principle for
the primal composite. It follows that the optimal J for the dual composite
is £t, as asserted.

2.3. Function Space Issues

We have said nothing about how singular J or E may be. It is usually
unnecessary to specify such information because the answer is obvious:
each field should have finite energy for the associated variational principle
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using for the last step the convexity of U. Recognizing that

we see that the constant-current variational principle for the dual com-
posite evaluated at Eg is



with a 1 <2<a 2 . Suppose furthermore that the composite has a checker-
board microstructure, with material 1 in the white squares and material 2
in the black ones. Then the choice of function space amounts to a very con-
crete decision: do we require the electric potential to be continuous at the
corners, or do we permit it to be discontinuous? Indeed, if we require
f|TP|a2 dV to be finite then P must be continuous, by the Sobolev embed-
ding lemma, since a2 > 2. But if we only require VP to have finite energy
then 0 can be discontinuous—its behavior near a corner can be as shown
in Fig. 1.

Jikov has shown that we may constrain P to be continuous when min-
imizing (21). This leads to a different notion of effective energy than that
obtained using discontinuous potentials with finite-energy. In particular,
the two alternative choices lead to different solutions of the field equations.
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for some constants c 0 , c l , c 2 >0 and a > l . Then the dual potential U
satisfies a similar condition with a replaced by a' = a/(a - 1), and we expect

(21)-(22). This determines the appropriate function spaces for E and J in
many cases. Suppose, for example, the potential satisfies

For specific microstructures the solutions can be more regular. But
singularities can arise, for example at multigrain junctions. The singularities
are determined by the form of the local conductivity, and we have no right
to constrain them.

The situation is different and more subtle, however, when the growth
law of the potential is spatially heterogeneous. Suppose, for example, the
potential satisfies

rather than (24), with x1 <a2 . Then it is not clear whether to impose the
weaker condition that E have finite energy, or the stronger one that
J \E\a 2dV< i. Somewhat surprisingly, we have the right to choose—and
the solution can depend on the choice. This has been explored by
Jikov(27,28) and in Chapters 14-15 of ref. 12.

The following example, due to Jikov, reveals the essence of the matter.
Consider a composite made of two materials, with potentials
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The same issue arises, of course, for the complementary variational
principle (22). A more restrictive choice of function space for E naturally
corresponds to a less restrictive choice of function space for J. Thus if
we require the electric potential P to be continuous at a corner we should
permit the current potential f to be discontinuous, and vice versa.

It is natural to ask which solution is the "correct" one. This is a ques-
tion of physics, not mathematics; we know no example where the answer
is clear. One might hope that approximation would lead to insight. For
example, our checkerboard has U=\E\a ( x , y ) with a(x, y) discontinuous;
one might hope that by smoothing the exponent slightly we could get an
unambiguous definition of effective behavior. Alas, this does not work:
similar function space issues arise even when the exponent is smooth, with
the saddle points of a ( X , y) playing the role of the "corners."

We shall avoid such function-space issues in the rest of this paper by
considering mainly composites for which (24) holds.

3. DUALITY RESULTS FOR NONLINEAR
COMPOSITE MEDIA

This section considers specific types of physically relevant non-
linearities, and explores the consequences of duality in each case. Following
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Fig. 1. A discontinuous, finite-energy VP, near the corner (x, y) = (0, 0). In the two quad-
rants occupied by material 2 it takes the values 0 and 1 respectively. In the two quadrants
occupied by material 1 it takes the values x/r and — y/r respectively.



ref. 15, we focus on three different classes of nonlinear behavior: (a) the
weakly nonlinear regime, where attention is on small nonlinear corrections
to predominantly linear response and the related phenomenon of flicker
noise; (b) power-law behavior, where the conductivity is proportional to
\E\B for some B; and (c) dielectric breakdown, where the conductivity
vanishes for |£| less then a critical value then increases linearly thereafter.

Our main focus is on behavior near percolation. The primal and dual
composites describe different types of percolation problems—in the Ohmic
setting, for example, if the primal mixes a normal conductor with a perfect
insulator then the dual mixes a normal conductor with a perfect conductor.
Thus duality couples the percolation exponents and scaling functions of
physically different systems.

We shall consider mainly systems which are locally and macroscopi-
cally isotropic. Thus we use the scalar form of the duality relation (13)
rather than its tensor generalization (18).

All isotropic conductors with inversion symmetry (centrosymmetric crystal
structure) exhibit such behavior, with B = 2, for an appropriate range of
applied fields. Evidently a represents the Ohmic conductivity and b is the
coefficient of nonlinearity. We permit a and b to vary from component
to component, but we suppose all components have the same exponent p.
The hypothesis of weak nonlinearity (28) requires that the applied field be
sufficiently small.

The weakly nonlinear bulk behavior of an isotropic composite made
from such materials has again the form (27), with the same exponent and
effective coefficients ae and b e : ( l 5 , 1 8 )
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with

3.1. Weakly Nonlinear Composites

By a "weakly nonlinear" composite we really mean perturbation
theory around the linear regime. It is therefore sufficient to keep the first
nonlinear term in the dependence of J on E. We suppose that locally



The effective behavior of these two composites can be expressed as

P * ( a l ( \ E \ ) , a 2 ( \ E \ ) ; E 0 ) = af + beEB
0
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and

This relation describes the nonlinear behavior of the composite, to first
order when (28) holds. The effective coefficients have explicit formulas:

and

in the other. The dual composite is another two-component composite with
the same microgeometry. Keeping only the lowest order terms in b, we find
the weakly nonlinear behavior of its component materials:

in one component and

where E 1 ( r ) is the local electric field associated with applied field E0 in the
corresponding linear composite (with the same Ohmic conductivity in each
components and the same microgeometry but A = 0).(18) Besides describing
the weakly nonlinear behavior, these bulk moduli also have another inter-
pretation when B = 2: then the ratio be/P

2
e determines the total power of the

conductance fluctuation noise (known as flicker noise or 1/f-noise) in the
composite.(15,18)

We now examine the consequences of duality. Consider a two-compo-
nent, weakly nonlinear composite in which the local conductivities are
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and

where

is the magnitude of the current flowing through the primal composite,
which is also the magnitude of the volume-averaged "electric field" in the
dual composite. According to the duality relation (13), these effective con-
ductivities satisfy

to first order in the local nonlinearity coefficient b. This leads to

which is the well known duality result for linear composite materials, and

Substituting J0 from (36), we find a new duality result for the bulk effective
nonlinearity coefficients:

In the special case B=2 this gives a relation for the flicker-noise coef-
ficients:

We turn now to the consequences for percolation. The flicker-noise
coefficient of a high-contrast composite is expected to have a characteristic
power-law behavior near the percolation threshold.(29-32) When mixing a
good conductor with a perfect insulator we expect



where Ap = pl — pc > 0 with pc the percolation threshold of material 1. The
dual composite is a mixture of a normal conductor described by (34) and
a perfect conductor (l/p2 = i), and (42) gives
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above the percolation threshold of the good conductor. Here aM and bM

describe the good conductor; Ap = \p — pc where pc is the percolation
threshold; and K is a critical exponent. Similarly, when mixing a poor con-
ductor with a perfect conductor we expect

for conductor—insulator mixtures and superconductor—normal conductor
mixtures respectively. (Of course t = s in the present two-dimensional
setting, as a consequence of the linear duality result (38).)

Returning to our earlier notation (32)-(33), we take material 2 to be
a perfect insulator (p2 = 0). Then (41) becomes

above the percolation threshold of the poor conductor. Here aI and bI

describe the poor conductor, Ap = \p — pc\ where pc is the percolation
threshold; and K' is a critical exponent.3 These are nonlinear analogues of
the familiar scaling laws from the percolation theory of two-component
Ohmic composites:

Substituting these two expressions in the duality result (40) we conclude
that the critical exponents describing the behavior above and below the
threshold are the same:

This result was previously obtained for random resistor networks by
Wright et al.(32) They used the links-nodes-blobs model of the percolation

3 We do not mean to claim that (41) and (42) hold for every continuum percolation problem.
Rather, our assertion is that if they are valid then duality imposes certain restrictions on the
exponents K, K'.



with the same definition of -. Substituting these formulas into the duality
relation (40) we find, in addition to the equality (44), two equalities
between the four scaling functions:
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cluster and the duality relation for square linear networks to study the
critical behavior of the resistance fluctuations above and below percolation.
By using the nonlinear duality relation ( 1 3 ) we have shown that this rela-
tion is also valid for continuum composites of arbitrary microgeometry,
subject only to the existence of scaling laws of the form (41) and (42).

This discussion can be easily extended to composites where the Ohmic
conductivity ratio is finite. Following standard practice in percolation
theory, we assume a law for the effective noise coefficient near the percola-
tion threshold which interpolates between the two extremes considered so
far:(33,34)

with z = ( P 2 / P l ) / A p t + s. Arguing similarly for the dual composite, its bulk
effective noise coefficient is

where the Ohmic conductivity of the poor conductor is pI and that of the
good conductor is aM. The scaling functions FI and FM are evaluated at
z = ( P I / P M ) A p I + s with t and s determined by (43). In writing (45) we
employ the usual abuse of notation: there are, in fact, two pairs of scaling
functions, F+

M,F+
I and F-

M, FI
-, one to be used when the good conduc-

tor percolates, the other to be used when the poor conductor percolates.
Returning to our usual notation (32)-(33), we consider the case when
PI>>P2 > 0. Then the bulk effective noise coefficient of the primal com-
posite is

These relations must be interpreted appropriately: when the LHS uses F+

the RHS uses , F ( d ) - , and vice versa.



where the "nonlinear conductivity" a is constant and B>—1. Such
behavior is observed in certain classes of conductors including ZnO
ceramics.(15) More generally, it describes the response of a material when
the magnitude of the applied field is very large, so that the linear
approximation breaks down completely.

We consider composites in which the nonlinear conductivity a varies
from component to component but the exponent ft is the same for each
component. The effective behavior of such a composite is again of power-
law type, with the same exponent B. Therefore the composite is charac-
terized by its effective nonlinear conductivity Pe:

(15)

There are a few simple microgeometrics for which ae can be given
explicitly.(20) Other approaches to its calculation include effective medium
theories(35,36) and a perturbation analysis around the case of a homo-
geneous medium.(19)

We now examine the consequences of duality. The relations we obtain
should be satisfied by any physically reasonable mean field theory. Con-
sider a two-component, strongly nonlinear composite in which the local
conductivities are
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3.2. Power Law Composites

The simplest "strong nonlinearity" is a power law relation between the
local electric current and the local electric field:

where the angular brackets denote volume averaging and <£> = E0 is the
externally applied electric field. There is a general formula for ae:

in the first component and



in the second. The dual composite is another two-component composite
with the same microgeometry. Its components have local conductivity laws

in the first component and

in the second, where

is the magnitude of the current flowing through the primal composite,
which is also the magnitude of the volume-averaged "electric field" in the
dual composite. According to the duality relation (13) these effective con-
ductivities satisfy

This is the duality result for the nonlinear effective conductivities of com-
posites made from power-law materials.

We turn now to the consequences for percolation. As before, we con-
sider the high-contrast limit. When mixing a good conductor (nonlinear

Substituting J0 from (54), we obtain

where

and

The effective conductivities of these two composites can be expressed as
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When B = y = 0 this reduces to the well-known result t = s for two-dimen-
sional Ohmic composites. The relation (59) was previously obtained by
Straley and Kenkel for strongly nonlinear square random resistor
networks.(14) By using the nonlinear duality relation (13) we have shown
that it also applies for continuum composites of arbitrary microgeometry,
subject only to the existence of scaling laws of the form (57) and (58).

When the conductivity ratio is finite, the behavior described by (57)
and (58) breaks down for Ap near 0, since ae cannot vanish or become
infinite. Instead, we expect the nonlinear effective conductivity to satisfy a
law of the form(38)

178 Levy and Kohn

conductivity aM, exponent B with a perfect insulator (nonlinear conduc-
tivity aI = 0), we expect the nonlinear effective conductivity to behave as

above the percolation threshold of the good conductor.(37,14) Similarly,
when mixing a poor conductor (nonlinear conductivity aI, exponent B)
with a perfect conductor (nonlinear conductivity aM= i) we expect

Substituting these two expressions in the duality result (56) we find a rela-
tion between the two critical exponents s(y) and t (B) :

when Ap = pl — pc > 0, with pc the percolation threshold of material 1. The
dual composite is a mixture of a normal conductor described by (51) and
a perfect conductor (since d2

-1/(B+l) = i), and (58) gives

below the percolation threshold of the perfect conductor. Here t(B) and
s ( B ) are critical exponents, the power-law analogues of the familiar critical
exponents for Ohmic composites (43).

Returning to our earlier notation (49)-(50), we take material 2 to be
a perfect insulator (P2 = 0). Then (57) becomes



This applies near the percolation threshold, for mixtures of two materials
with nonlinear conductivities aM >> aI and the same exponent B. The func-
tion FB(z) takes into account the effect of having a finite conductivity ratio
PI/PM while the prefactor is determined by the limiting case (57). In
writing (60) we adopt the usual abuse of notation: in truth there are two
scaling functions, F+

B and FB
-, one to be used when the good conductor

percolates, the other to be used when the poor conductor percolates.
Returning to our usual notation (49)-(50), we find that when a1 > > a 2 > 0
the primal composite has nonlinear effective conductivity
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with

The dual has local nonlinear conductivities P1
-1/(B + 1)<<P2

-1/(B+1) W+1 ' and
exponent y, so its nonlinear effective conductivity is

Substituting these relations into (56) we find, in addition to the relation
(59) between the critical exponents, an explicit relation between the two
scaling functions FB and Fy = F-B/(B+1):

This relation must be interpreted appropriately: when the LHS uses
F+

-B/(B+1) the RHS uses F-
B, and vice versa.

These exact relations can be used to test the reasonableness of any
mean field theory for strongly nonlinear composites near the percolation
threshold. Two such theories have been proposed recently, by Bergman(35)

and by Wan et al.(36) Bergman's theory predicts

while that of Wan et al. predicts



In both cases the critical exponents satisfy the duality relation (59). It
would be interesting to know whether these theories also satisfy the addi-
tional requirement (62).

3.3. Dielectric Breakdown and Critical Current

We turn to a different type of nonlinearity—or more precisely, a pair
of types, dual to one another. It can be viewed as a simple model of dielec-
tric breakdown. There is also an interpretation involving current-induced
destruction of superconductivity. Either way, this nonlinearity differs from
those considered above because the relationship between E and J changes
abruptly at a certain critical field.

We concentrate first on dielectric breakdown. In this phenomenon, the
material is a perfect insulator until the magnitude of the electric field
reaches a critical value Ecr, when it begins to conduct (see Fig. 2a). The
associated nonlinear conductivity law is

For non-smooth laws such as this it is convenient to consider the
associated convex potential, defined by J = d U/dE. One verifies that
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with the convention t+ = max{t, 0}. Its convex dual is

which is non-differentiable at J = 0. Therefore the inverse of (65), the law
for E in terms of J, takes the form
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Fig. 2. Current vs. electric field curves for materials with a breakdown type nonlinearity:
(a) Dielectric breakdown at a threshold field £cr. (b) Breakdown of perfect conductivity at a
critical current £cr.



When we pass from a primal composite to the associated dual com-
posite, we treat Jt as an "electric field" and Et as a "current field." Sup-
pose each material in the primal composite satisfies a dielectric breakdown
law of the form (65), with a(r) and Ecr(r) varying from component to com-
ponent: Then from (66) we have the local relation (Fig. 2b)

Thus, each component of the dual composite is a superconductor, with
critical current E c r (r ) and resistivity 1 / a ( r ) .

We turn now to the consequences of duality. Consider a two compo-
nent composite mixing a material of dielectric-breakdown type with an
Ohmic conductor. We suppose material 1 is described by (65) with a = al,
and material 2 has Ohmic conductivity a2. We suppose furthermore that
the Ohmic material does not percolate. Then the composite exhibits dielec-
tric-breakdown type behavior: it behaves as a perfect insulator when the
applied field E0 is below a critical value E0, cr. At this critical applied field
the conductive region—consisting of material 2 and the part of material 1
which has undergone breakdown—begins to percolate, and the composite
begins to conduct. The effective behavior of the composite is not as simple
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Current-induced destruction of superconductivity can be modeled very
similarly.(39) In this setting the material is a perfect conductor until the
magnitude of the current field reaches a critical value Jcr, when it develops
nonzero resistance. This is described by the nonlinear conductivity law

We emphasize that (67) has the same form as (65) but with J and E inter-
changed. Its inverse, the law giving J in terms of £ in a superconductor, is
therefore analogous to (66):



This is clear from Section 2, since the current field in the dual composite
and the electric field in the primal composite are identical up to rotation
by 90°. An alternative derivation is provided by the duality relation (13)
linking a* and a*d. It says

822/90/1-2-13
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as (65), because the average current J0 will not depend linearly on E0 for
|£| >£0,cr. Instead the effective law has the form

for some nonlinear function a*(t) defined for t > E 0 , cr with p*(E0 , cr) = 0.
The dual composite mixes a superconductor with an Ohmic conduc-

tor: In material 1 the current field is given as a function of the electric field
by (68) with Jcr = Ecr and [p = a1]. In material 2 the Ohmic conductivity
is l/p2. The superconductor percolates. Therefore, arguing as above (but
applying a current rather than an electric field) we expect the composite to
behave once again like a superconductor, with an effective critical current
J(d)

0,cr. As before, the effective law is not as simple as (68); instead it has the
form

for some nonlinear function a d *( t ) defined for t>0 with tpd*(t) -> J(d)
0,cr as

t->0.
We claim, as a consequence of duality, that these two composites—

one made from an insulator capable of dielectric breakdown, the other
made from a superconductor—have the same critical fields:

with J0= a+(\E0\) £0. This amounts to the statement that

for all t> E0 ,cr. Therefore

confirming the conclusion (69).



Lobb et al.(4l) previously derived this result for linear square random
resistor networks. They also derived it for the "swiss cheese-inverse swiss
cheese" version of continuum percolation via a links-nodes-blobs model of
the percolation cluster. Our more general derivation shows that this rela-
tion does not depend on a specific model for continuum percolation; it
holds in complete generality, as a consequence of the general relation (69).

3.4. Mixed and Self-Dual Composites

In Section 3.2 the "growth law" of J versus E was assumed to be
homogeneous: |J| i \E\B + l with a uniform value of B throughout the
composite. Therefore the function space issues raised in Section 2.3 were
not relevant. However it is also of interest to consider some examples with
inhomogeneous growth laws.

Consider a composite consisting of nonlinear inclusions embedded in
a linear host. Such "mixed" composites are interesting because their non-
linearity may be strongly enhanced relative to bulk samples of the non-
linear component.(42-47) Because of the matrix-inclusion structure there are
no multigrain junctions, so we do not expect the ambiguities discussed in
Section 2.3 to arise. A mean field theory was recently developed, extending
the Maxwell Garnett theory to composites with inclusions of arbitrary non-
linearity.(25,26) Duality places certain restrictions upon the form of any
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As usual, this relation has consequences for the scaling laws near per-
colation. Our primal composite is a mixture of an Ohmic material and an
insulator capable of dielectric breakdown. Suppose it is random, with frac-
tion p of Ohmic conductor. As p -> pc and the Ohmic conductor percolates,
the critical field of the composite tends to 0. It is standard in percolation
theory to assume a characteristic scaling law:(40,4l)

Clearly, as a consequence of duality, the two exponents are the same:

Our dual composite is a mixture of an Ohmic material and a supercon-
ductor. It is also random, with the same microgeometry and the same pc.
Its critical field also tends to 0 as p - > p c , and we expect a characteristic
scaling law:(41)



Thus the nonlinear Maxwell Garnett theory obeys the duality relation ( 1 3 ) ,
as it should.

We turn finally to the topic of "self-dual" composites, focusing as usual
on the isotropic case. A composite is said to be self-dual if it is statistically
indistinguishable from its dual. As noted by Kozlov,(13) such a composite
must have Ohmic effective behavior—with conductivity 1—no matter how
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mean field theory. We now show that the nonlinear Maxwell Garnett
theory passes this test.

According to refs. 25 and 26 the effective conductivity function of a
two-dimensional mixture of cylindrical inclusions is given by

where ah is the Ohmic conductivity of the host, pi (Ei) is the field dependent
conductivity of the inclusions, pi is the volume fraction of the inclusions,
E0 is the volume averaged applied field, and Ei is the field inside the inclu-
sions, which is determined by

The dual composite has nonlinear inclusions with conductivity l / p i ( £ i ( J i ) )
embedded in a linear host with conductivity I/ah. The effective conduc-
tivity of the dual composite, calculated by the same nonlinear Maxwell
Garnett theory, is

where Ji, the local current inside the inclusions, is determined by

and J0 = ae(E0) E0 is the total current flowing through the original com-
posite. Comparing (71 ) and (72) we see that



where j(t) = ta*(t). Our convexity hypothesis (9) says that t - > j ( t ) is
monotone; (74) says that j is its own inverse; and our goal is to show that
j(t) = t for all t. Indeed, fix any t0 and let s0 = j ( t 0 ) . From (74) we have
J(s0) = t0, whence

and

and the microstructure is statistically invariant under interchange of
materials 1 and 2. If the function-space issues of Section 2.3 are relevant—
e.g. if the composite has multigrain junctions—then the continuity conven-
tions must also be statistically invariant.

The following simple example of a self-dual nonlinear composite is due
to Kozlov(13) and Jikov et al.(12) Consider a periodic checkerboard in
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nonlinear its local response. The proof is simple: from (13) we know that
a*(\E0\) a*d(\J0 |) = 1 with J0 = a*(\E0| ) E0, and the hypothesis of self-
duality says P*d = p*. It follows that

for every t> 0. Multiplying by t we get

However monotonicity requires

It follows that s0 = t0, i.e. j ( t 0 ) = t0, as desired.
When is a two-component composite self-dual? If the materials in the

primal composite have nonlinear conductivities Pi(|£|), i=1,2, then the
materials in the dual composite have nonlinear conductivities

So the composite is self-dual if



which the white squares have conductivity p l ( \ E \ ) = p \E\B and the black
squares have conductivity a 2 ( \ E \ ) = a - 1 / ( B + 1 ) \E\y with y defined by (53).
We resolve the ambiguity discussed in Section 2.3 by requiring the electric
potential to be continuous at alternate corners, with the current potential
continuous at the remaining corners. The dual composite is another peri-
odic checkerboard, with conductivity p 1 , d ( \ J \ ) = p -1 / (B+ l) \J\y in the white
squares and P 2 , d ( | J | ) = P \J\B in the black squares. Like the primal, its elec-
tric potential is continuous at alternate corners, as is its current potential.
Thus the composite is self-dual. It is not manifestly isotropic, since 90°
symmetry implies isotropy only in the linear setting, so strictly speaking the
analysis given above does not apply. But our analysis is easily adapted,
using (18) in place of (13), and making use of the 90° symmetry. Relation
(74) is replaced by the assertion that E - > J ( E ) = a*(E)E is its own
inverse. Monotonicity (75) is replaced by the assertion that
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in one component, and

in the other. If in addition the two components are statistically inter-
changeable then the weakly nonlinear effective behavior is Ohmic, i.e. the
effective coefficient of weak nonlinearity be, defined by (31), vanishes. This
implies the following simple relation between the average electric fields in
the two components:

The conclusion is as before: J(E) = E, i.e. the effective behavior of the self-
dual periodic checkerboard is Ohmic (and isotropic) with conductivity 1.

The same two materials can also be combined to form other self-dual
composites. For example, consider the "cell material" obtained by packing
space randomly with non-overlapping circles of all sizes, then filling each
circle with material 1 or 2 by independent flips of an unbiased coin. We
conjecture that the ambiguities of Section 2.3 do not arise in this case. Then
the composite is clearly statistically interchangeable and self-dual.

Another, quite different example arises in the weakly nonlinear con-
text, when the local conductivities are



where the angular brackets denote volume averaging over the individual
components and we have used the fact that each component has area
fraction 1/2.
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